Как перевести 0

Функции интерпретации оценивают содержимое текстовых полей ввода или выражений и применяют указанный формат данных к полученному числовому значению. Эти функции позволяют указывать формат числа в соответствии с типом данных, включая такие атрибуты, как разделители разрядов и формат даты.

Функции интерпретации возвращают двойное значение, состоящее из строкового и числового значения, но могут использоваться для преобразования строки в число. Эти функции берут текстовое значение входного выражения и создают число, представляющую собой строку.

В отличие от них, функции форматирования делают все наоборот. Они берут числовые выражения и интерпретируют их в качестве строк, определяя формат полученного текста.

Если функции интерпретации не используются, программа QlikView интерпретирует данные как комбинацию чисел, дат, времени, меток времени и строк с помощью настроек по умолчанию для формата чисел, даты и времени, заданных переменными скрипта и операционной системой.

Все функции интерпретации можно использовать как в скриптах загрузки, так и в выражениях диаграмм.

Примечание: Для большей ясности во всех представлениях чисел в качестве десятичного разделителя используется десятичная точка.

Пользуйтесь информацией из раскрывающегося списка по каждой функции, чтобы увидеть краткое описание и синтаксис каждой функции. Дополнительную информацию можно получить, если щелкнуть имя функции в описании синтаксиса.

Date#

Date# преобразует текстовую строку в числовые данные, используя данные из предоставленного образца формата, или, если игнорируется, из образца формата по умолчанию. Если код формата не указан, используется формат даты, установленный в операционной системе по умолчанию.

date_hash(text)

Interval#

Interval#() преобразует текстовое выражение в интервал времени в формате, установленном в операционной системе (по умолчанию) или в формате, указанном во втором аргументе, если имеется.

interval_hash(text)

Money#

Money#() преобразует текстовую строку в денежное значение в формате, установленном в скрипте загрузки или в операционной системе (если не указана строка форматирования). Пользовательские символы разделителей десятков и тысяч являются дополнительными параметрами.

Money# — скрипт и функция диаграммы(text ] ])

Num#

Num#() преобразует текстовую строку в числовое значение в формате, установленном в скрипте загрузки или в операционной системе (если не указана строка форматирования). Пользовательские символы разделителей десятков и тысяч являются дополнительными параметрами.

num_hash(text]])

Text

Text() преобразует выражение в текстовый вид даже при возможности обработки его в качестве числа.

Text(expr)

Time#

Time#() преобразует выражение со значением времени в формат времени, установленный в скрипте загрузки или в операционной системе (если не указана строка форматирования)..

Десятичные дроби можно складывать, вычитать, умножать и делить. Также, десятичные дроби можно сравнивать между собой.

В этом уроке мы рассмотрим каждую из этих операций по отдельности.

Сложение десятичных дробей

Как мы знаем, десятичная дробь состоит из целой и дробной части. При сложении десятичных дробей, целые и дробные части складываются по отдельности.

Например, сложим десятичные дроби 3,2 и 5,3. Десятичные дроби удобнее складывать в столбик.

Запишем сначала эти две дроби в столбик, при этом целые части обязательно должны быть под целыми, а дробные под дробными. В школе это требование называют «запятая под запятой».

Запишем дроби в столбик так, чтобы запятая оказалась под запятой:

Складываем дробные части: 2 + 3 = 5. Записываем пятёрку в дробной части нашего ответа:

Теперь складываем целые части: 3 + 5 = 8. Записываем восьмёрку в целой части нашего ответа:

Теперь отделяем запятой целую часть от дробной. Для этого опять же соблюдаем правило «запятая под запятой»:

Получили ответ 8,5. Значит, выражения 3,2 + 5,3 равно 8,5

3,2 + 5,3 = 8,5

На самом деле не всё так просто как кажется на первый взгляд. Здесь тоже имеются свои подводные камни, о которых мы сейчас поговорим.

Разряды в десятичных дробях

У десятичных дробей, как и у обычных чисел, есть свои разряды. Это разряды десятых, разряды сотых, разряды тысячных. При этом разряды начинаются после запятой.

Первая цифра после запятой отвечает за разряд десятых, вторая цифра после запятой за разряд сотых, третья цифра после запятой за разряд тысячных.

Разряды в десятичных дробях хранят в себе нéкоторую полезную информацию. В частности, они сообщают сколько в десятичной дроби десятых частей, сотых частей и тысячных частей.

Например, рассмотрим десятичную дробь 0,345

Позиция, где находится тройка, называется разрядом десятых

Позиция, где находится четвёрка, называется разрядом сотых

Позиция, где находится пятёрка, называется разрядом тысячных

Посмотрим на данный рисунок. Видим, что в разряде десятых располагается тройка. Это говорит о том, что в десятичной дроби 0,345 содержится три десятых .

Смотрим дальше. В разряде сотых располагается четвёрка. Это говорит о том, что в десятичной дроби 0,345 содержится четыре сотых .

Смотрим дальше. В разряде тысячных находится пятёрка. Это говорит о том, что в десятичной дроби 0,345 содержится пять тысячных .

Если мы сложим дроби , и то получим изначальную десятичную дробь 0,345

Сначала мы получили ответ , но перевели его в десятичную дробь и получили 0,345.

При сложении десятичных дробей соблюдаются те же правила что и при сложении обычных чисел. Сложение десятичных дробей происходит по разрядам: десятые части складываются с десятыми частями, сотые с сотыми, тысячные с тысячными.

Поэтому при сложении десятичных дробей требуют соблюдать правило «запятая под запятой». Запятая под запятой обеспечивает тот самый порядок, в котором десятые части складываются с десятыми, сотые с сотыми, тысячные с тысячными.

Пример 1. Найти значение выражения 1,5 + 3,4

Записываем в столбик данное выражение, соблюдая правило «запятая под запятой»:

В первую очередь складываем дробные части 5 + 4 = 9. Записываем девятку в дробной части нашего ответа:

Теперь складываем целые части 1 + 3 = 4. Записываем четвёрку в целой части нашего ответа:

Теперь отделяем запятой целую часть от дробной. Для этого опять же соблюдаем правило «запятая под запятой»:

Получили ответ 4,9. Значит значение выражения 1,5 + 3,4 равно 4,9

1,5 + 3,4 = 4,9

Пример 2. Найти значение выражения: 3,51 + 1,22

Записываем в столбик данное выражение, соблюдая правило «запятая под запятой»

В первую очередь складываем дробную часть, а именно сотые части 1+2=3. Записываем тройку в сотой части нашего ответа:

Теперь складываем десятые части 5+2=7. Записываем семёрку в десятой части нашего ответа:

Теперь складываем целые части 3+1=4. Записываем четвёрку в целой части нашего ответа:

Отделяем запятой целую часть от дробной, соблюдая правило «запятая под запятой»:

Получили ответ 4,73. Значит значение выражения 3,51 + 1,22 равно 4,73

3,51 + 1,22 = 4,73

Как и в обычных числах, при сложении десятичных дробей может произойти переполнение разряда. В этом случае в ответе записывается одна цифра, а остальные переносят на следующий разряд.

Пример 3. Найти значение выражения 2,65 + 3,27

Записываем в столбик данное выражение:

Складываем сотые части 5+7=12. Число 12 не поместится в сотой части нашего ответа. Поэтому в сотой части записываем цифру 2, а единицу переносим на следующий разряд:

Теперь складываем десятые части 6+2=8 плюс единица, которая досталась от предыдущей операции, получим 9. Записываем цифру 9 в десятой части нашего ответа:

Теперь складываем целые части 2+3=5. Записываем цифру 5 в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 5,92. Значит значение выражения 2,65 + 3,27 равно 5,92

2,65 + 3,27 = 5,92

Пример 4. Найти значение выражения 9,5 + 2,8

Записываем в столбик данное выражение

Складываем дробные части 5 + 8 = 13. Число 13 не поместится в дробной часть нашего ответа, поэтому сначала записываем цифру 3, а единицу переносим на следующий разряд, точнее переносим её к целой части:

Теперь складываем целые части 9+2=11 плюс единица, которая досталась от предыдущей операции, получаем 12. Записываем число 12 в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 12,3. Значит значение выражения 9,5 + 2,8 равно 12,3

9,5 + 2,8 = 12,3

При сложении десятичных дробей количество цифр после запятой в обеих дробях должно быть одинаковым. Если цифр не хватает, то эти места в дробной части заполняются нулями.

Пример 5. Найти значение выражения: 12,725 + 1,7

Прежде чем записывать в столбик данное выражение, сделаем количество цифр после запятой в обеих дробях одинаковым. В десятичной дроби 12,725 после запятой три цифры, а в дроби 1,7 только одна. Значит в дроби 1,7 в конце нужно добавить два нуля. Тогда получим дробь 1,700. Теперь можно записать в столбик данное выражение и начать вычислять:

Складываем тысячные части 5+0=5. Записываем цифру 5 в тысячной части нашего ответа:

Складываем сотые части 2+0=2. Записываем цифру 2 в сотой части нашего ответа:

Складываем десятые части 7+7=14. Число 14 не поместится в десятой части нашего ответа. Поэтому сначала записываем цифру 4, а единицу переносим на следующий разряд:

Теперь складываем целые части 12+1=13 плюс единица, которая досталась от предыдущей операции, получаем 14. Записываем число 14 в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 14,425. Значит значение выражения 12,725+1,700 равно 14,425

12,725+ 1,700 = 14,425

Вычитание десятичных дробей

При вычитании десятичных дробей нужно соблюдать те же правила что и при сложении: «запятая под запятой» и «равное количества цифр после запятой».

Пример 1. Найти значение выражения 2,5 − 2,2

Записываем в столбик данное выражение, соблюдая правило «запятая под запятой»:

Вычисляем дробную часть 5−2=3. Записываем цифру 3 в десятой части нашего ответа:

Вычисляем целую часть 2−2=0. Записываем ноль в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 0,3. Значит значение выражения 2,5 − 2,2 равно 0,3

2,5 − 2,2 = 0,3

Пример 2. Найти значение выражения 7,353 — 3,1

В этом выражении разное количество цифр после запятой. В дроби 7,353 после запятой три цифры, а в дроби 3,1 только одна. Значит в дроби 3,1 в конце нужно добавить два нуля, чтобы сделать количество цифр в обеих дробях одинаковым. Тогда получим 3,100.

Теперь можно записать в столбик данное выражение и вычислить его:

Получили ответ 4,253. Значит значение выражения 7,353 − 3,1 равно 4,253

7,353 — 3,1 = 4,253

Как и в обычных числах, иногда придётся занимать единицу у соседнего разряда, если вычитание станет невозможным.

Пример 3. Найти значение выражения 3,46 − 2,39

Вычитаем сотые части 6−9. От число 6 не вычесть число 9. Поэтому нужно занять единицу у соседнего разряда. Заняв единицу у соседнего разряда число 6 обращается в число 16. Теперь можно вычислить сотые части 16−9=7. Записываем семёрку в сотой части нашего ответа:

Теперь вычитаем десятые части. Поскольку мы заняли в разряде десятых одну единицу, то цифра, которая там располагалась, уменьшилась на одну единицу. Другими словами, в разряде десятых теперь не цифра 4, а цифра 3. Вычислим десятые части 3−3=0. Записываем ноль в десятой части нашего ответа:

Теперь вычитаем целые части 3−2=1. Записываем единицу в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 1,07. Значит значение выражения 3,46−2,39 равно 1,07

3,46−2,39=1,07

Пример 4. Найти значение выражения 3−1,2

В этом примере из целого числа вычитается десятичная дробь. Запишем данное выражение столбиком так, чтобы целая часть десятичной дроби 1,23 оказалась под числом 3

Теперь сделаем количество цифр после запятой одинаковым. Для этого после числа 3 поставим запятую и допишем один ноль:

Теперь вычитаем десятые части: 0−2. От нуля не вычесть число 2. Поэтому нужно занять единицу у соседнего разряда. Заняв единицу у соседнего разряда, 0 обращается в число 10. Теперь можно вычислить десятые части 10−2=8. Записываем восьмёрку в десятой части нашего ответа:

Теперь вычитаем целые части. Раньше в целой располагалось число 3, но мы заняли у него одну единицу. В результате оно обратилось в число 2. Поэтому из 2 вычитаем 1. 2−1=1. Записываем единицу в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 1,8. Значит значение выражения 3−1,2 равно 1,8

3 − 1,2 = 1,8

Умножение десятичных дробей

Умножение десятичных дробей это просто и даже увлекательно. Чтобы перемножить десятичные дроби, нужно перемножить их как обычные числа, не обращая внимания на запятые.

Получив ответ, необходимо отделить запятой целую часть от дробной. Чтобы сделать это, надо посчитать количество цифр после запятой в обеих дробях, затем в ответе отсчитать справа столько же цифр и поставить запятую.

Пример 1. Найти значение выражения 2,5 × 1,5

Перемножим эти десятичные дроби как обычные числа, не обращая внимания на запятые. Чтобы не обращать внимания на запятые, можно на время представить, что они вообще отсутствуют:

Получили 375. В этом числе необходимо отделить запятой целую часть от дробной. Для этого нужно посчитать количество цифр после запятой в дробях 2,5 и 1,5. В первой дроби после запятой одна цифра, во второй дроби тоже одна. Итого две цифры.

Возвращаемся к числу 375 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 3,75. Значит значение выражения 2,5 × 1,5 равно 3,75

2,5 × 1,5 = 3,75

Пример 2. Найти значение выражения 12,85 × 2,7

Перемножим эти десятичные дроби, не обращая внимания на запятые:

Получили 34695. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дробях 12,85 и 2,7. В дроби 12,85 после запятой две цифры, в дроби 2,7 одна цифра — итого три цифры.

Возвращаемся к числу 34695 и начинаем двигаться справа налево. Нам нужно отсчитать три цифры справа и поставить запятую:

Получили ответ 34,695. Значит значение выражения 12,85 × 2,7 равно 34,695

12,85 × 2,7 = 34,695

Умножение десятичной дроби на обычное число

Иногда возникают ситуации, когда требуется умножить десятичную дробь на обычное число.

Чтобы перемножить десятичную дробь и обычное число, нужно перемножить их, не обращая внимания на запятую в десятичной дроби. Получив ответ, необходимо отделить запятой целую часть от дробной. Для этого нужно посчитать количество цифр после запятой в десятичной дроби, затем в ответе отсчитать справа столько же цифр и поставить запятую.

Например, умножим 2,54 на 2

Умножаем десятичную дробь 2,54 на обычное число 2, не обращая внимания на запятую:

Получили число 508. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дроби 2,54. В дроби 2,54 после запятой две цифры.

Возвращаемся к числу 508 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 5,08. Значит значение выражения 2,54 × 2 равно 5,08

2,54 × 2 = 5,08

Умножение десятичных дробей на 10, 100, 1000

Умножение десятичных дробей на 10, 100 или 1000 выполняется таким же образом, как и умножение десятичных дробей на обычные числа. Нужно выполнить умножение, не обращая внимания на запятую в десятичной дроби, затем в ответе отделить целую часть от дробной, отсчитав справа столько же цифр, сколько было цифр после запятой в десятичной дроби.

Например, умножим 2,88 на 10

Умножим десятичную дробь 2,88 на 10, не обращая внимания на запятую в десятичной дроби:

Получили 2880. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дроби 2,88. Видим, что в дроби 2,88 после запятой две цифры.

Возвращаемся к числу 2880 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 28,80. Отбросим последний ноль — получим 28,8. Значит значение выражения 2,88×10 равно 28,8

2,88 × 10 = 28,8

Есть и второй способ умножения десятичных дробей на 10, 100, 1000. Этот способ намного проще и удобнее. Он заключается в том, что запятая в десятичной дроби передвигается вправо на столько цифр, сколько нулей во множителе.

Например, решим предыдущий пример 2,88×10 этим способом. Не приводя никаких вычислений, сразу же смотрим на множитель 10. Нас интересует сколько в нём нулей. Видим, что в нём один ноль. Теперь в дроби 2,88 передвигаем запятую вправо на одну цифру, получим 28,8.

2,88 × 10 = 28,8

Попробуем умножить 2,88 на 100. Сразу же смотрим на множитель 100. Нас интересует сколько в нём нулей. Видим, что в нём два нуля. Теперь в дроби 2,88 передвигаем запятую вправо на две цифры, получаем 288

2,88 × 100 = 288

Попробуем умножить 2,88 на 1000. Сразу же смотрим на множитель 1000. Нас интересует сколько в нём нулей. Видим, что в нём три нуля. Теперь в дроби 2,88 передвигаем запятую вправо на три цифры. Третьей цифры там нет, поэтому мы дописываем ещё один ноль. В итоге получаем 2880.

2,88 × 1000 = 2880

Умножение десятичных дробей на 0,1 0,01 и 0,001

Умножение десятичных дробей на 0,1, 0,01 и 0,001 происходит таким же образом, как и умножение десятичной дроби на десятичную дробь. Необходимо перемножить дроби, как обычные числа, и в ответе поставить запятую, отсчитав столько цифр справа, сколько цифр после запятой в обеих дробях.

Например, умножим 3,25 на 0,1

Умножаем эти дроби, как обычные числа, не обращая внимания на запятые:

Получили 325. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дробях 3,25 и 0,1. В дроби 3,25 после запятой две цифры, в дроби 0,1 одна цифра. Итого три цифры.

Возвращаемся к числу 325 и начинаем двигаться справа налево. Нам нужно отсчитать три цифры справа и поставить запятую. Отсчитав три цифры мы обнаруживаем, что цифры закончились. В этом случае нужно дописать один ноль и поставить запятую:

Получили ответ 0,325. Значит значение выражения 3,25 × 0,1 равно 0,325

3,25 × 0,1 = 0,325

Есть и второй способ умножения десятичных дробей на 0,1, 0,01 и 0,001. Этот способ намного проще и удобнее. Он заключается в том, что запятая в десятичной дроби передвигается влево на столько цифр, сколько нулей во множителе.

Например, решим предыдущий пример 3,25 × 0,1 этим способом. Не приводя никаких вычислений сразу же смотрим на множитель 0,1. Нас интересует сколько в нём нулей. Видим, что в нём один ноль. Теперь в дроби 3,25 передвигаем запятую влево на одну цифру. Передвинув запятую на одну цифру влево мы видим, что перед тройкой больше нет никаких цифр. В этом случае дописываем один ноль и ставим запятую. В результате получаем 0,325

3,25 × 0,1 = 0,325

Попробуем умножить 3,25 на 0,01. Сразу же смотрим на множитель 0,01. Нас интересует сколько в нём нулей. Видим, что в нём два нуля. Теперь в дроби 3,25 передвигаем запятую влево на две цифры, получаем 0,0325

3,25 × 0,01 = 0,0325

Попробуем умножить 3,25 на 0,001. Сразу же смотрим на множитель 0,001. Нас интересует сколько в нём нулей. Видим, что в нём три нуля. Теперь в дроби 3,25 передвигаем запятую влево на три цифры, получаем 0,00325

3,25 × 0,001 = 0,00325

Нельзя путать умножение десятичных дробей на 0,1, 0,001 и 0,001 с умножением на 10, 100, 1000. Типичная ошибка большинства людей.

При умножении на 10, 100, 1000 запятая переносится вправо на столько же цифр сколько нулей во множителе.

А при умножении на 0,1, 0,01 и 0,001 запятая переносится влево на столько же цифр сколько нулей во множителе.

Если на первых порах это сложно запомнить, можно пользоваться первым способом, в котором умножение выполняется как с обычными числами. В ответе нужно будет отделить целую часть от дробной, отсчитав справа столько же цифр, сколько цифр после запятой в обеих дробях.

Деление меньшего числа на большее. Продвинутый уровень.

В одном из предыдущих уроков мы сказали, что при делении меньшего числа на большее получается дробь, в числителе которой делимое, а в знаменателе – делитель.

Например, чтобы разделить одно яблоко на двоих, нужно в числитель записать 1 (одно яблоко), а в знаменатель записать 2 (двое друзей). В результате получим дробь . Значит каждому другу достанется по яблока. Другими словами, по половине яблока. Дробь это ответ к задаче «как разделить одно яблоко на двоих»

Оказывается, можно решать эту задачу и дальше, если разделить 1 на 2. Ведь дробная черта в любой дроби означает деление, а значит и в дроби это деление разрешено. Но как? Мы ведь привыкли к тому, что делимое всегда больше делителя. А здесь наоборот, делимое меньше делителя.

Всё станет ясным, если вспомнить, что дробь означает дробление, деление, разделение. А значит и единица может быть раздроблена на сколько угодно частей, а не только на две части.

При разделении меньшего числа на большее получается десятичная дробь, в которой целая часть будет 0 (нулевой). Дробная часть же может быть любой.

Итак, разделим 1 на 2. Решим этот пример уголком:

Единицу на два просто так нацело не разделить. Если задать вопрос «сколько двоек в единице», то ответом будет 0. Поэтому в частном записываем 0 и ставим запятую:

Теперь как обычно умножаем частное на делитель, чтобы вытащить остаток:

Настал момент, когда единицу можно дробить на две части. Для этого справа от полученной единички дописываем ещё один ноль:

Получили 10. Делим 10 на 2, получаем 5. Записываем пятёрку в дробной части нашего ответа:

Теперь вытаскиваем последний остаток, чтобы завершить вычисление. Умножаем 5 на 2, получаем 10

Получили ответ 0,5. Значит дробь равна 0,5

Половину яблока можно записать и с помощью десятичной дроби 0,5. Если сложить эти две половинки (0,5 и 0,5), мы опять получим изначальное одно целое яблоко:

Этот момент также можно понять, если представить, как 1 см делится на две части. Если 1 сантиметр разделить на 2 части, то получится 0,5 см

Пример 2. Найти значение выражения 4 : 5

Сколько пятёрок в четвёрке? Нисколько. Записываем в частном 0 и ставим запятую:

Умножаем 0 на 5, получаем 0. Записываем ноль под четвёркой. Сразу же вычитаем этот ноль из делимого:

Теперь начнём дробить (делить) четвёрку на 5 частей. Для этого справа от 4 дописываем ноль и делим 40 на 5, получаем 8. Записываем восьмёрку в частном.

Завершаем пример, умножив 8 на 5, и получив 40:

Получили ответ 0,8. Значит значение выражения 4 : 5 равно 0,8

Пример 3. Найти значение выражения 5 : 125

Сколько чисел 125 в пятёрке? Нисколько. Записываем 0 в частном и ставим запятую:

Умножаем 0 на 125, получаем 0. Записываем 0 под пятёркой. Сразу же вычитаем из пятёрки 0

Теперь начнём дробить (делить) пятёрку на 125 частей. Для этого справа от этой пятёрки запишем ноль:

Делим 50 на 125. Сколько чисел 125 в числе 50? Нисколько. Значит в частном опять записываем 0

Умножаем 0 на 125, получаем 0. Записываем этот ноль под 50. Сразу же вычитаем 0 из 50

Теперь делим число 50 на 125 частей. Для этого справа от 50 запишем ещё один ноль:

Делим 500 на 125. Сколько чисел 125 в числе 500. В числе 500 четыре числа 125. Записываем четвёрку в частном:

Завершаем пример, умножив 4 на 125, и получив 500

Получили ответ 0,04. Значит значение выражения 5 : 125 равно 0,04

Деление чисел без остатка

В уроке деление мы научились делить числа с остатком. Например, чтобы разделить 9 на 5, мы поступали следующим образом:

и далее говорили, что «девять разделить на пять будет один и четыре в остатке».

Теперь мы получили необходимые знания, чтобы разделить 9 на 5 без остатка. Наша задача раздробить остаток 4 на 5 частей. Другими словами, разделить меньшее число на большее.

Итак, поставим в частном после единицы запятую, тем самым указывая, что деление целых частей закончилось и мы приступаем к дробной части:

Допишем ноль к остатку 4

Теперь делим 40 на 5, получаем 8. Записываем восьмёрку в частном:

Что делать дальше мы уже знаем. Вытаскиваем остаток (если есть). Умножаем восьмёрку на делитель 5, и записываем полученный результат под 40:

40−40=0. Получили 0 в остатке. Значит деление на этом полностью завершено. При делении 9 на 5 получается десятичная дробь 1,8:

9 : 5 = 1,8

Пример 2. Разделить 84 на 5 без остатка

Сначала разделим 84 на 5 как обычно с остатком:

Получили в частном 16 и еще 4 в остатке. Теперь разделим этот остаток на 5. Поставим в частном запятую, а к остатку 4 допишем 0

Теперь делим 40 на 5, получаем 8. Записываем восьмерку в частном после запятой:

и завершаем пример, проверив есть ли еще остаток:

Деление десятичной дроби на обычное число

Десятичная дробь, как мы знаем состоит из целой и дробной части. При делении десятичной дроби на обычное число в первую очередь нужно:

  • разделить целую часть десятичной дроби на это число;
  • после того, как целая часть будет разделена, нужно в частном сразу же поставить запятую и продолжить вычисление, как в обычном делении.

Например, разделим 4,8 на 2

Запишем этот пример уголком:

Теперь разделим целую часть на 2. Четыре разделить на два будет два. Записываем двойку в частном и сразу же ставим запятую:

Теперь умножаем частное на делитель и смотрим есть ли остаток от деления:

4−4=0. Остаток равен нулю. Ноль пока не записываем, поскольку решение не завершено. Далее продолжаем вычислять, как в обычном делении. Сносим 8 и делим её на 2

8 : 2 = 4. Записываем четвёрку в частном и сразу умножаем её на делитель:

Получили ответ 2,4. Значение выражения 4,8 : 2 равно 2,4

Пример 2. Найти значение выражения 8,43 : 3

Делим 8 на 3, получаем 2. Сразу же ставим запятую после двойки:

Теперь умножаем частное на делитель 2 × 3 = 6. Записываем шестёрку под восьмёркой и находим остаток:

Далее продолжаем вычислять, как в обычном делении. Сносим 4

Делим 24 на 3, получаем 8. Записываем восьмёрку в частном. Сразу же умножаем её на делитель, чтобы найти остаток от деления:

24−24=0. Остаток равен нулю. Ноль пока не записываем. Сносим последнюю тройку из делимого и делим на 3, получим 1. Сразу же умножаем 1 на 3, чтобы завершить этот пример:

Получили ответ 2,81. Значит значение выражения 8,43 : 3 равно 2,81

Деление десятичной дроби на десятичную дробь

Чтобы разделить десятичную дробь на десятичную дробь, надо в делимом и в делителе перенести запятую вправо на столько же цифр, сколько их после запятой в делителе, и затем выполнить деление на обычное число.

Например, разделим 5,95 на 1,7

Запишем уголком данное выражение

Теперь в делимом и в делителе перенесём запятую вправо на столько же цифр, сколько их после запятой в делителе. В делителе после запятой одна цифра. Значит мы должны в делимом и в делителе перенести запятую вправо на одну цифру. Переносим:

После перенесения запятой вправо на одну цифру десятичная дробь 5,95 обратилась в дробь 59,5. А десятичная дробь 1,7 после перенесения запятой вправо на одну цифру обратилась в обычное число 17. А как делить десятичную дробь на обычное число мы уже знаем. Дальнейшее вычисление не составляет особого труда:

Запятая переносится вправо с целью облегчить деление. Это допускается по причине того, что при умножении или делении делимого и делителя на одно и то же число, частное не меняется. Что это значит?

Это одна из интересных особенностей деления. Его называют свойством частного. Рассмотрим выражение 9 : 3 = 3. Если в этом выражении делимое и делитель умножить или разделить на одно и то же число, то частное 3 не изменится.

Давайте умножим делимое и делитель на 2, и посмотрим, что из этого получится:

(9 × 2) : (3 × 2) = 18 : 6 = 3

Как видно из примера, частное не поменялось.

Тоже самое происходит, когда мы переносим запятую в делимом и в делителе. В предыдущем примере, где мы делили 5,91 на 1,7 мы перенесли в делимом и делителе запятую на одну цифру вправо. После переноса запятой, дробь 5,91 преобразовалась в дробь 59,1 а дробь 1,7 преобразовалась в обычное число 17. На самом деле здесь происходило умножение на 10. Вот как это выглядело:

5,91 × 10 = 59,1

1,7 × 10 = 17

Поэтому от количества цифр после запятой в делителе зависит то, на что будет умножено делимое и делитель. Другими словами, от количества цифр после запятой в делителе будет зависеть то, на сколько цифр в делимом и в делителе запятая будет перенесена вправо.

Деление десятичной дроби на 10, 100, 1000

Деление десятичной дроби на 10, 100, или 1000 осуществляется таким же образом, как и деление десятичной дроби на обычное число. Например, разделим 2,1 на 10. Решим этот пример уголком:

Но есть и второй способ. Он более лёгкий. Суть этого способа в том, что запятая в делимом переносится влево на столько цифр, сколько нулей в делителе.

Решим предыдущий пример этим способом. 2,1 : 10. Смотрим на делитель. Нас интересует сколько в нём нулей. Видим, что там один ноль. Значит в делимом 2,1 нужно перенести запятую влево на одну цифру. Переносим запятую влево на одну цифру и видим, что там больше не осталось цифр. В этом случае перед цифрой дописываем ещё один ноль. В итоге получаем 0,21

2,1 : 10 = 0,21

Попробуем разделить 2,1 на 100. В числе 100 два нуля. Значит в делимом 2,1 надо перенести запятую влево на две цифры:

2,1 : 100 = 0,021

Попробуем разделить 2,1 на 1000. В числе 1000 три нуля. Значит в делимом 2,1 надо перенести запятую влево на три цифры:

2,1 : 1000 = 0,0021

Деление десятичной дроби на 0,1, 0,01 и 0,001

Деление десятичной дроби на 0,1, 0,01, и 0,001 осуществляется таким же образом, как и деление десятичной дроби на десятичную дробь. В делимом и в делителе надо перенести запятую вправо на столько цифр, сколько их после запятой в делителе.

Например, разделим 6,3 на 0,1. В первую очередь перенесём запятые в делимом и в делителе вправо на столько же цифр, сколько их после запятой в делителе. В делителе после запятой одна цифра. Значит переносим запятые в делимом и в делителе вправо на одну цифру.

После перенесения запятой вправо на одну цифру, десятичная дробь 6,3 превращается в обычное число 63, а десятичная дробь 0,1 после перенесения запятой вправо на одну цифру превращается в единицу. А разделить 63 на 1 очень просто:

63 : 1 = 63

Значит значение выражения 6,3 : 0,1 равно 63

6,3 : 0,1 = 63

Но есть и второй способ. Он более лёгкий. Суть этого способа в том, что запятая в делимом переносится вправо на столько цифр, сколько нулей в делителе.

Решим предыдущий пример этим способом. 6,3 : 0,1. Смотрим на делитель. Нас интересует сколько в нём нулей. Видим, что там один ноль. Значит в делимом 6,3 нужно перенести запятую вправо на одну цифру. Переносим запятую вправо на одну цифру и получаем 63

6,3 : 0,1 = 63

Попробуем разделить 6,3 на 0,01. В делителе 0,01 два нуля. Значит в делимом 6,3 надо перенести запятую вправо на две цифры. Но в делимом после запятой только одна цифра. В этом случае в конце нужно дописать ещё один ноль. В результате получим 630

6,3 : 0,01 = 630

Попробуем разделить 6,3 на 0,001. В делителе 0,001 три нуля. Значит в делимом 6,3 надо перенести запятую вправо на три цифры:

6,3 : 0,001 = 6300

Задания для самостоятельного решения

Задание 1. Выполните сложение: 0,6 + 0,3 Решение: Задание 2. Выполните сложение: 1,2 + 5,3 Решение: Задание 3. Выполните сложение: 1,6 + 0,4 Решение: Задание 4. Выполните сложение: 0,8 + 0,5 Решение: Задание 5. Выполните вычитание: 0,9 − 0,4 Решение: Задание 6. Выполните вычитание: 2 − 0,3 Решение: Задание 7. Выполните вычитание: 9 − 7,8 Решение: Задание 8. Выполните вычитание: 4 − 1,8 Решение: Задание 9. Выполните умножение: 3,2 × 1,8 Решение: Задание 10. Выполните умножение: 9,3 × 5,8 Решение: Задание 11. Выполните умножение: 0,23 × 0,07 Решение: Задание 12. Выполните умножение: 3,14 × 0,25 Решение: Задание 13. Выполните деление: 9,36 : 6 Решение: Задание 14. Выполните деление: 0,169 : 13 Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

1 января 2017

Вот, казалось бы, перевод десятичной дроби в обычную — элементарная тема, но многие ученики её не понимают! Поэтому сегодня мы подробно рассмотрим сразу несколько алгоритмов, с помощью которых вы разберётесь с любыми дробями буквально за секунду.

Напомню, что существует как минимум две формы записи одной и той же дроби: обыкновенная и десятичная. Десятичные дроби — это всевозможные конструкции вида 0,75; 1,33; и даже −7,41. А вот примеры обыкновенных дробей, которые выражают те же самые числа:

\

Сейчас разберёмся: как от десятичной записи перейти к обычной? И самое главное: как сделать это максимально быстро?

Основной алгоритм

На самом деле существует как минимум два алгоритма. И мы сейчас рассмотрим оба. Начнём с первого — самого простого и понятного.

Чтобы перевести десятичную дробь в обыкновенную, необходимо выполнить три шага:

Важное замечание по поводу отрицательных чисел. Если в исходном примере перед десятичной дробью стоит знак «минус», то и на выходе перед обыкновенной дробью тоже должен стоять «минус». Вот ещё несколько примеров:

Примеры перехода от десятичной записи дробей к обычной

Особое внимание хотелось бы обратить на последний пример. Как видим, в дроби 0,0025 присутствует много нулей после запятой. Из-за этого приходится аж целых четыре раза умножать числитель и знаменатель на 10. Можно ли как-то упростить алгоритм в этом случае?

Конечно, можно. И сейчас мы рассмотрим альтернативный алгоритм — он чуть более сложен для восприятия, но после небольшой практики работает намного быстрее стандартного.

Более быстрый способ

В данном алгоритме также 3 шага. Чтобы получить обычную дробь из десятичной, нужно выполнить следующее:

Вот и всё! На первый взгляд, эта схема сложнее предыдущей. Но на самом деле он и проще, и быстрее. Судите сами:

\

Ещё один пример:

\

Наконец, последний пример:

\

Особенность этой дроби — наличие целой части. Поэтому на выходе у нас получается неправильная дробь 47/25. Можно, конечно, попытаться разделить 47 на 25 с остатком и таким образом вновь выделить целую часть. Но зачем усложнять себе жизнь, если это можно сделать ещё на этапе преобразований? Что ж, разберёмся.

Что делать с целой частью

На самом деле всё очень просто: если мы хотим получить правильную дробь, то необходимо убрать из неё целую часть на время преобразований, а затем, когда получим результат, вновь дописать её справа перед дробной чертой.

Например, рассмотрим то же самое число: 1,88. Забьём на единицу (целую часть) и посмотрим на дробь 0,88. Она легко преобразуется:

\

Затем вспоминаем про «утерянную» единицу и дописываем её спереди:

\

Вот и всё! Ответ получился тем же самым, что и после выделения целой части в прошлый раз. Ещё парочка примеров:

\

В этом и состоит прелесть математики: каким бы путём вы не пошли, если все вычисления выполнены правильно, ответ всегда будет одним и тем же.:)

В заключение хотел бы рассмотреть ещё один приём, который многим помогает.

Преобразования «на слух»

Давайте задумаемся о том, что вообще такое десятичная дробь. Точнее, как мы её читаем. Например, число 0,64 — мы читаем его как «ноль целых, 64 сотых», правильно? Ну, или просто «64 сотых». Ключевое слово здесь — «сотых», т.е. число 100.

А что насчёт 0,004? Это же «ноль целых, 4 тысячных» или просто «четыре тысячных». Так или иначе, ключевое слово — «тысячных», т.е. 1000.

Ну и что в этом такого? А то, что именно эти числа в итоге «всплывают» в знаменателях на втором этапе алгоритма. Т.е. 0,004 — это «четыре тысячных» или «4 разделить на 1000»:

\

Попробуйте потренироваться сами — это очень просто. Главное — правильно прочесть исходную дробь. Например, 2,5 — это «2 целых, 5 десятых», поэтому

\

А какое-нибудь 1,125 — это «1 целая, 125 тысячных», поэтому

\

В последнем примере, конечно, кто-то возразит, мол, не всякому ученику очевидно, что 1000 делится на 125. Но здесь нужно помнить, что 1000 = 103, а 10 = 2 ∙ 5, поэтому

\

Таким образом, любая степень десятки раскладывается лишь на множители 2 и 5 — именно эти множители нужно искать и в числителе, чтобы в итоге всё сократилось.

На этом урок окончен. Переходим к более сложной обратной операции — см. «Переход от обыкновенной дроби к десятичной».

Всего найдено: 24

Вопрос № 304989

Добрый день! Подскажите, пожалуйста, как правильно написать словами «74-километровый»: семидесятичетырехкилометровый или семидесяти четырехкилометровый?

Ответ справочной службы русского языка

Правильно: семидесятичетырехкилометровый.

Вопрос № 304279

Добрый день! Получила текст с терминологией, связанной со статистикой. Подскажите, пожалуйста, какие нужно использовать существительные — ГОДА или ЛЕТ после десятичных дробей? К примеру 6,8 лет или 6,8 года? 67,3 лет или года? Спасибо!

Ответ справочной службы русского языка

В сочетании с дробным числительным существительное ставится в форме единственного числа родительного падежа.

Вопрос № 301520

Ответ справочной службы русского языка

При дробных числах существительные ставятся в форме единственного числа родительного падежа: в 1,5 раза, в 2,7 раза.

Вопрос № 300369

Добрый день, уважаемые эксперты. Я патрулирующий русской Википедии. В своей работе нередко сталкиваюсь с числительными, а именно с денежными наименованиями. Постоянно возникают трудности с десятичными дробями. Не знаю как склонять существительные рядом с ними. Например, 2,89 миллиардА или миллиардОВ доллара(-ов). Обычно проверяю себя, проговаривая дробное число: «Две целых восемьдесят девять сотЫХ миллиардОВ долларОВ», но не знаю, правильно ли это. Можете, пожалуйста, объяснить и просклонять данное число и, например одна целая тридцать одна сотая. Благодарю.

Ответ справочной службы русского языка

Правило простое: при дробных числительных существительное употребляется в форме единственного числа родительного падежа: 4,3 рубля, 67,84 километра, 2,89 миллиарда. Слово доллар уже не зависит напрямую от числительного, поэтому ставится во множественном числе: 2,89 миллиарда (чего?) долларов.

Поэтому верно: Две целых восемьдесят девять сотых миллиарда долларов; одна целая тридцать одна сотая миллиарда долларов.

Вопрос № 297933

Доброго времени суток! Возникла трудность со склонением десятичных дробей, и ответ найти самостоятельно не получилось. Ниже представлен пример предложения. Прошу помочь разобраться с этим. Если масса половины кубического дециметра вещества равна нулю целым сорока пяти сотым килограмма, то масса одного кубического дециметра вещества равна нулю целых девять десятых килограмма. (Написано по-разному для наглядности вариантов). Спасибо за помощь!

Ответ справочной службы русского языка

Склоняются все части числительного. Верно: Если масса половины кубического дециметра вещества равна нулю целым сорока пяти сотым килограмма, то масса одного кубического дециметра вещества равна нулю целым девяти десятым килограмма.

Обратите внимание, что слова ноль целых обычно опускаются.

Вопрос № 296479

Нужен ли союз «и» при написании десятичных знаков после запятой в дробном числительном? Пример: 10,5 (десять целых и пять десятых) кв. м ? Спасибо!

Ответ справочной службы русского языка

Союз не нужен: десять целых пять десятых.

Вопрос № 290412

Здравствуйте! Есть ли правило относительно того, какой разделитель надо использовать в десятичной дроби — точку или запятую? Использование точки не противоречит правилам?

Ответ справочной службы русского языка

В русском языке в дробных числах ставится запятая, а не точка. Например: 6,87.

Вопрос № 285780

Уважаемые специалисты! Я уже задавала Вам похожий вопрос и получила на него ответ, за что Вам очень благодарна. Большое спасибо! Позвольте, пожалуйста, вопрос ради уточнения. Дело в том, что я не могу найти похожий вопрос среди других вопросов на Вашей сайте. После десятичных дробей имя существительное всегда стоит в родительном падеже единственном числе. Например, три целых две десятых яблока или семь целых четыре десятых окна. Верно? А вот например, три целых две десятых тысячи автомобилей или семь целых четыре десятых миллиона дорог. Второе имя существительное «автомобилей» и «дорог» всегда стоит в родительном падеже множественном числе? Правило о том, что один автомобиль; два, три, четыре автомобиля; пять, шесть и т. д. автомобилей сюда не подходит? Очень прошу ответить на мой вопрос! Пожалуйста! Заранее благодарю Вас.

Ответ справочной службы русского языка

Да, всё верно.

Правильно, например: три яблока, три целых две десятых яблока, три целых две десятых тысячи яблок; пять яблок, пять целых семь десятых яблока, пять целых семь десятых миллиона яблок.

Вопрос № 285735

Объясните, пожалуйста. Мой вопрос касается имён существительных, которые употребляются после десятичный дробей. Как будет правильно? Семь целых шесть десятых ЯБЛОКА или ЯБЛОК? Восемь целых пять десятых ТЫСЯЧИ или ТЫСЯЧ? Восемь целых пять десятых ТЫСЯЧИ или ТЫСЯЧ автомобилей? Заранее благодарю за ответ!

Ответ справочной службы русского языка

Существительным управляет дробная часть: семь целых шесть десятых яблока, восемь целых пять десятых тысячи автомобилей.

Вопрос № 284337

Меня интересуют окончания слов после десятичных дробей: 422,8 квадратн(ых, ого) метр(ов, а). Ответ нужен срочно.

Ответ справочной службы русского языка

Существительным управляет дробная часть: 422,8 квадратного метра (восемь десятых чего? квадратного метра).

Вопрос № 282675

Скажите пожалуйста, какой вариант правильнее использовать с десятичными дробями: миллиардА или миллиардОВ (миллионА или миллионОВ). Напр. 3,5 миллиарда/миллиардов, 8,2 миллиарда/миллиардов, 21,7 миллиона/миллионов. Зависит ли правильная форма от конкретной цифры? Если да, подскажите пожалуйста общее правило. Спасибо!

Ответ справочной службы русского языка

Существительным управляет дробная часть, поэтому нужен родительный падеж единственного числа: 3,5 миллиарда, 8,2 миллиарда, 21,7 миллиона (пять десятых миллиарда, две десятых миллиарда, семь десятых миллиона).

Вопрос № 282224

Здравствуйте. Существует ли какое-то правило по поводу произношения (выбора) «года» или «лет» в десятичных дробях? Например, «Средний возраст составляет 30.4 года» и
«Повысился до 30.4 лет». Спасибо.
P.S. В корректности примеров не уверен.

Ответ справочной службы русского языка

Если в словосочетании существительное зависит от дробного числительного, то существительное ставится в форме родительного падежа единственного числа: 30,4 года; до 30,4 года.

Вопрос № 278948

Добрый день!
Очень срочно! Я уже писала вам, но не получил ответа. Какой знак препинания — запятая или точка с запятой — ставится при перечислении десятичных дробных чисел, идущих одной строкой, например: 1,05;(,) 5,45;(,) 1,25?
Редактор настаивает на запятой, но, по-моему, в данном случае она затрудняет восприятие информации.
Спасибо!

Ответ справочной службы русского языка

Не следует использовать один и тот же знак как знак перечисления и как знак-разделитель между целой и дробной частью числа. Постановка точки с запятой оправданна.

Вопрос № 278095

Подскажите, пожалуйста, как написать «84-пушечный корабль» прописью.
С уважением, Мария

Ответ справочной службы русского языка

Восьмидесятичетырехпушечный.

Вопрос № 277440

Почему во многих СМИ пишут числительные в виде «2,6 тысячи» вместо «2600»? По-моему последнее намного проще прочесть.

Ответ справочной службы русского языка

Действительно, читателю проще, когда написано без десятичной дроби.

Страницы: 2 последняя

Оставьте комментарий